Endothelial enriched microRNAs regulate angiotensin II-induced endothelial inflammation and migration.
نویسندگان
چکیده
Inflammation is observed at all stages of atherosclerosis. The initial stage of atherosclerosis is characterized by recruitment of leukocytes to activated endothelial cells (ECs). MicroRNAs (miRNAs) are a class of 19-25 nucleotides, non-protein-coding RNAs that repress target gene expression by translational inhibition or mRNA degradation. The link between miRNA and endothelial functions is largely unknown. Northern blot showed that miR-155 and miR-221 were highly expressed in human umbilical vein endothelial cells (HUVECs) and vascular smooth muscle cells (VSMCs). Bioinformatics analysis proposed Ets-1, a key endothelial transcription factor for inflammation and tube formation, as a candidate target for miR-155 and miR-221/222 cluster. The effect was demonstrated by luciferase reporter assay and Western blot. By using Western blot, we also confirmed that angiotensin II type 1 receptor (AT1R) is a target of miR-155 in HUVECs. Quantitative PCR showed that Ets-1 and its downstream genes, including VCAM1, MCP1 and FLT1, were upregulated in angiotensin II-stimulated HUVECs, and this effect was partially reversed by overexpression of miR-155 and miR-221/222. In addition, cell adhesion assay revealed overexpression of miR-155 and miR-221/222 effectively decreased the adhesion of Jurkat T cells to Ang II-stimulated HUVECs. Besides, by targeting AT1R, miR-155 can also decrease the HUVECs migration in response to Ang II. In summary, HUVECs highly expressed miR-155 may co-target AT1R and Ets-1 while miR-221/222 targets Ets-1, which indirectly regulate the expression of several inflammatory molecules of ECs, and therefore attenuate the adhesion of Jurkat T cells to activated HUVECs and reduce HUVECs migration. These findings present possible therapeutic targets in atherosclerosis.
منابع مشابه
The Higher Response of Vascular Endothelial Growth Factor and Angiotensin-II to Human Chorionic Gonadotropin in Women with Polycystic Ovary Syndrome
Background This research investigated the response of vascular active factors, vascular endothelial growth factor (VEGF) and angiotensin-II (AT-II) to ovarian stimulation during 24 hours in patients with polycystic ovary syndrome (PCOS). MaterialsAndMethods In this clinical trial study, 52 patients with PCOS and 8 control cases were stimulated with human chorionic gonadotropin (HCG) on the 4th ...
متن کاملP 61: MicroRNA as a Therapeutic Tool to Prevent Blood Brain Barrier Dysfunction in Neuroinflammation
Endothelial cells present in brain are unique and differ from other peripheral tissues in a number of ways, which ensures specific brain endothelial barrier properties. Endothelial dysfunction is the earliest event in the initiation of vascular damage caused by inflammation. Various microRNAs (miRNA) have been discovered in different cellular components of the blood bran barrier (BBB). miRNAs a...
متن کاملEndothelial Vasodilator Angiotensin Receptors are Changing in Mice with Ageing
Background: The vascular function of Angiotensin II-type-2 receptors in adults is controversial. We sought their location and function in mouse aortic rings at young and old mice. Materials and Methods: Male C57Bl mice (aged 4 and 14 months) were killed by CO2. The descending thoracic aorta was cleaned and dissected into rings. Aortic rings were mounted in Krebs’ solution at 37 °C an...
متن کاملThe effect of omega- 3 polyunsaturated fatty acids on endothelial tight junction occludin expression in rat aorta during lipopolysaccharide-induced inflammation
Objective(s): Occludin is essential for proper assembly of tight junctions (TJs) which regulate paracellular endothelial permeability. Omega-3 polyunsaturated fatty acids (Ω-3 PUFA) protect endothelial barrier function against injury. Materials and Methods: We examined anti-inflammatory effect of Ω-3 PUFA intake (30 mg/kg/day for 10 days) on expression and location of occludin in the aorta of ...
متن کاملThe role of microRNAs in arterial remodelling.
Adaptive alterations of the vessel wall architecture, called vascular remodelling, can be found in arterial hypertension, during the formation of aneurysms, in restenosis after vascular interventions, and in atherosclerosis. MicroRNAs (miR) critically affect the main cellular players in arterial remodelling and may either promote or inhibit the structural changes in the vessel wall. They regula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Atherosclerosis
دوره 215 2 شماره
صفحات -
تاریخ انتشار 2011